Correct Calculation of Volatility in a Jump-Diffusion Model
نویسندگان
چکیده
منابع مشابه
A Jump-Diffusion Model with Stochastic Volatility and Durations
Market microstructure theories suggest that the durations between transactions carry information about volatility. This paper puts forward a model featuring stochastic volatility, stochastic conditional duration, and jumps to analyze high frequency returns and durations. Durations affect price jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We ad...
متن کاملStochastic Volatility Jump-Diffusion Model for Option Pricing
where is the Poisson process which corresponds to the underlying asset t , t is the jump size of asset price return with log normal distribution and t means that there is a jump the value of the process before the jump is used on the left-hand side of the formula. Moreover, in 2003, Eraker Johannes and Polson [3] extended Bate’s work by incorporating jumps in volatility and their model is giv...
متن کاملBasket Options Valuation for a Local Volatility Jump-Diffusion Model with the Asymptotic Expansion Method
In this paper we discuss the basket options valuation for a jump-diffusion model. The underlying asset prices follow some correlated local volatility diffusion processes with systematic jumps. We derive a forward partial integral differential equation (PIDE) for general stochastic processes and use the asymptotic expansion method to approximate the conditional expectation of the stochastic vari...
متن کاملOption Pricing under a Mean Reverting Process with Jump-Diffusion and Jump Stochastic Volatility
An alternative option pricing model is proposed, in which the asset prices follow the jump-diffusion and exhibits mean reversion. The stochastic volatility follows the jump-diffusion with mean reversion. We find a formulation for the European-style option in terms of characteristic functions.
متن کاملLinear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility
We aim at accommodating the existing affine jump-diffusion and quadratic models under the same roof, namely the linear-quadratic jump-diffusion (LQJD) class. We give a complete characterization of the dynamics of this class of models by stating explicitly a list of structural constraints, and compute standard and extended transforms relevant to asset pricing. We show that the LQJD class can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Derivatives
سال: 2003
ISSN: 1074-1240,2168-8524
DOI: 10.3905/jod.2003.319217